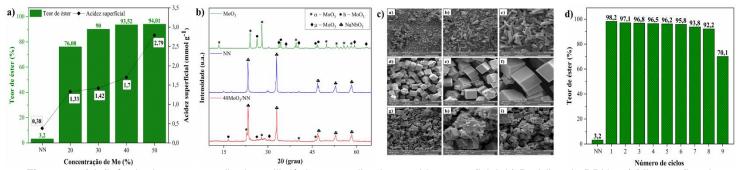


ÁREA: Catálise aplicada na produção de combustíveis, biocombustíveis, produtos químicos e energia

Preparação, caracterização e aplicação de um novo catalisador ácido baseado em perovskita para a produção de biodiesel

Izadora de A. Sobrinho ^{1,*}, Thaissa S. Ribeiro¹, Klemerson L. da Silva¹, Beatriz dos S. Silva¹, Deborah da C. Fonseca², Vicente da S. Lima¹, Matheus A. Gonçalves¹, Leyvison R. V. da Conceição^{1,2}.


¹Laboratório de Catálise e Oleoquímica, Universidade Federal do Pará (UFPA), Belém-PA, 66.075-110, Brasil

²Laboratório de Catálise e Oleoquímica, Instituto Federal de Educação, Ciência e Tecnologia (IFPA – Campus Belém), Belém-PA, 66.093-020, Brasil

*E-mail: izadora.sobrinho27@gmail.com

Resumo-Abstract

Este trabalho propõe a síntese de um novo catalisador ácido heterogêneo suportado, composto por NaNbO₃ (perovskita) modificado com MoO₃, aplicado na transesterificação metílica de óleo de fritura para produção de biodiesel. A síntese foi realizada em duas etapas: método hidrotermal e impregnação via úmida. O catalisador selecionado foi caracterizado por acidez superficial, difração de raios X (DRX) e microscopia eletrônica de varredura (MEV).

Figura 1. a) Influência da concentração de molibdênio no catalisador e acidez superficial, b) Padrões de DRX e c) Micrografias dos materiais sintetizados, d) Reutilização do catalisador 40MoO₃/NN.

As condições de síntese do catalisador impactam diretamente na eficiência catalítica e, consequentemente, no teor de ésteres no biodiesel. Sendo assim, foi investigada a influência da concentração de molibdênio (20% a 50%), sendo o catalisador com 40% de MoO₃ escolhido por sua alta atividade catalítica (93,52%) e viabilidade econômica. Este catalisador, denominado 40MoO₃-NN, apresentou acidez superficial três vezes maior em relação ao suporte, atribuída à impregnação eficaz dos sítios ácidos (Figura 1a). As análises de DRX e MEV confirmaram a formação de compostos cristalinos e morfologias típicas de MoO₃ e NaNbO₃ (Figura 1b e 1c). Sob condições otimizadas, o catalisador atingiu 96,4% de conversão em ésteres e manteve estabilidade após 8 ciclos, com teor de ésteres acima de 92%, destacando sua eficiência econômica e sustentável para a produção de biodiesel (Figura 1d).

Palavras-chave: Catálise ácida, Compostos perovskitas, Óxido de Molibdênio, Biodiesel.

Referências

ZHANG, G., XIE, W. ZrMo oxides supported catalyst with hierarchical porous structure for cleaner and sustainable production of biodiesel using acidic oils as feedstocks, **Journal of Cleaner Production**, v. 384, 2023.

KHARE, D., MAJUMDAR, S., KRISHNAMURTHY, S., DUBEY, A.K. An in vivo toxicity assessment of piezoelectric sodium potassium niobate nanoparticulates towards bone tissue engineering approach, **Biomaterials Advances**, v. 140, 2022.

GONÇALVES, M. A., MARES, E. K. L, ZAMIAN, J. R., FILHO, G. N. R., CONCEIÇÃO, L. R. V. Statistical optimization of biodiesel production from waste cooking oil using magnetic acid heterogeneous catalyst MoO3/SrFe2O4, **Fuel**, v. 304, 2021.

Agradecimentos